Geometry of Noncommutative k-Algebras

Arvid Siqveland

Abstract

Let X be a scheme over an algebraically closed field k, and let x ∈ SpecR ⊆ X be a closed point corresponding to the maximal ideal m ⊆ R. Then OˆX,x is isomorphic to the prorepresenting hull, or local formal moduli, of the deformation functor DefR/m :  → Sets. This suffices to reconstruct X up to etal´e coverings. For a noncommutative k-algebra A the simple modules are not necessarily of dimension one, and there is a geometry between them. We replace the points in the commutative situation with finite families of points in the noncommutative situation, and replace the geometry of points with the geometry of sets of points given by noncommutative deformation theory. We apply the theory to the noncommutative moduli of three-dimensional endomorphisms.

Relevant Publications in Generalized Lie Theory and Applications