Short Communication
James V. Rogers and Young W. C
Abstract
The rapid detection and diagnosis of Mycobacterium tuberculosis is critical to evaluate disease severity,\r\nefficacy of treatments and therapeutics, and public health monitoring. This study evaluated a BioNanoPore technology (BNP™ Middlebrook agar) to detect and quantitate M. tuberculosis in less time than traditional plate counting methods. BNP™ Middlebrook enabled visual detection of M. tuberculosis from actively-growing cultures and inoculated artificial sputum within 5 days; however, colonies were not visible on Middlebrook 7H10 agar. For cultures incubated in the presence or absence of artificial sputum for 19 days on BNP™ Middlebrook, M. tuberculosis ranged from 5.81-5.86 log10CFU/mL from liquid culture and 6.39-6.50 log10CFU/mL in artificial sputum; counts for M. tuberculosis in liquid culture ranged from 5.70-5.85 log10CFU/mL on Middlebrook 7H10. All colonies from 19 day-old cultures evaluated from the BNP™ Middlebrook and Middlebrook 7H10 media were positive for the Mycobacterium insertion sequence (IS) 6110 by real-time PCR. This study demonstrates that BNP™ Middlebrook can detect M. tuberculosis faster than standard plating techniques in the presence or absence of a simulated biological matrix (artificial sputum). Moreover, the BNP™ Middlebrook color development step does not interfere with real-time PCR detection of IS 6110. This study provides a preliminary assessment of the potential use of BNP™ Middlebrook for a more rapid screening and detection of viable M. tuberculosis with respect to clinical specimen evaluation, therapeutic\r\ntreatment/vaccine efficacy, or epidemiological surveillance.