Selective laser sintering of three-dimensional geometries and structures of quartz glass - possibilities and limits

Andrea Barz


Additive processes offer the possibility to create complex and three-dimensional geometries with great freedom of design. This technology is already very well developed for metallic materials and plastics. For silicate materials this innovative technology is still in its infancy. The special material properties of these hard and brittle materials are one reason for this. A new selective laser sintering process for glass powder is presented in this paper. With this process compact glass bodies can be built up, which have a residual porosity of about 25%. The maximum printable footprint of the building platform is 120 mm so far. In the course of the investigations a test geometry was designed to evaluate the resolution and the current structural limits of the process. As a result, the various printed geometries are analysed and metrologically eval­uated. A comparison is made with the sintering process­es for metals and plastics. Possibilities and limits of this novel sintering technology are evaluated and the future potential is shown.

Relevant Publications in European Journal of Applied Engineering and Scientific Research