The expansion of a finite number of terms of the Gauss hypergeometric function of unit argument and the Landau constants

Research Article

R. B. Paris

Abstract

We obtain convergent inverse factorial expansions for the sum Sn(a, b; c) of the first n ≥ 1 terms of the Gauss hypergeometric function 2F1(a, b; c; 1) of unit argument. The form of these expansions depends on the location of the parametric excess s := c− a− b in the complex s-plane. The leading behaviour as n → ∞ agrees with previous results in the literature. The case a = b = 1 2 , c = 1 corresponds to the Landau contants for which an expansion is obtained.

Relevant Publications in Mathematica Eterna